Fragment-Localized Kohn-Sham Orbitals via a Singles Configuration-Interaction Procedure and Application to Local Properties and Intermolecular Energy Decomposition Analysis.
نویسندگان
چکیده
As for generating localized Hartree-Fock orbitals, we propose a potentially linear-scaling singles-CI scheme to construct fragment-localized density functional theory (DFT) orbitals for molecular systems as water clusters. Due to the use of a deformation step instead of a localization step, the influence of the environment on each separate molecule can be studied in detail. The generated orbital set for the whole molecular system is strictly equivalent to a set of canonical orbitals and is a subsequent energy decomposition of intermolecular interactions into electrostatic, exchange repulsion, and orbital interaction, well beyond dimer systems. Beyond this, the correspondence of the individual orbitals to the initial monomer orbitals permits to assess how an interaction deforms an electron density. We show this for dipole moments, which may be decomposed into monomer contributions, polarization, and charge-transfer contribution. Applications to a water and an ammonia dimer and chains of water molecules show possible further developments toward multipolar expansions and other orbital-based schemes for parametrizing force fields.
منابع مشابه
Configuration interaction singles based on the real-space numerical grid method: Kohn-Sham versus Hartree-Fock orbitals.
We developed a program code of configuration interaction singles (CIS) based on a numerical grid method. We used Kohn-Sham (KS) as well as Hartree-Fock (HF) orbitals as a reference configuration and Lagrange-sinc functions as a basis set. Our calculations show that KS-CIS is more cost-effective and more accurate than HF-CIS. The former is due to the fact that the non-local HF exchange potential...
متن کاملLocalized Polycentric Orbital Basis Set for Quantum Monte Carlo Calculations Derived from the Decomposition of Kohn-Sham Optimized Orbitals
In this work, we present a simple decomposition scheme of the Kohn-Sham optimized orbitals which is able to provide a reduced basis set, made of localized polycentric orbitals, specifically designed for Quantum Monte Carlo. The decomposition follows a standard Density functional theory (DFT) calculation and is based on atomic connectivity and shell structure. The new orbitals are used to constr...
متن کاملEnergy decomposition scheme based on the generalized Kohn-Sham scheme.
In this paper, a new energy decomposition analysis scheme based on the generalized Kohn-Sham (GKS) and the localized molecular orbital energy decomposition analysis (LMO-EDA) scheme, named GKS-EDA, is proposed. The GKS-EDA scheme has a wide range of DFT functional adaptability compared to LMO-EDA. In the GKS-EDA scheme, the exchange, repulsion, and polarization terms are determined by DFT orbit...
متن کاملOrbitals in Quantum Chemistry
Orbitals, on the one hand, are often considered as auxiliary quantities without physical meaning for various reasons. Slater determinants, e.g., Hartree-Fock or Kohn-Sham determinants, are invariant with respect to unitary transformations of the occupied orbitals. Within densityfunctional theory (DFT) orbitals frequently are considered as quantities that merely generate the electron density but...
متن کاملAdaptive local basis set for Kohn-Sham density functional theory in a discontinuous Galerkin framework I: Total energy calculation
Kohn-Sham density functional theory is one of the most widely used electronic structure theories. Uniform discretization of the Kohn-Sham Hamiltonian generally results in a large number of basis functions per atom in order to resolve the rapid oscillations of the Kohn-Sham orbitals around the nuclei. Previous attempts to reduce the number of basis functions per atom include the usage of atomic ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of chemical theory and computation
دوره 4 12 شماره
صفحات -
تاریخ انتشار 2008